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Abstract

An accurate solution to the problem of wave propagation in conducting waveguides of arbitrary cross section
is developed. The solution is available in the form of two digital computer programs, which yield computed

values of both cutoff wave numbers and field distributions. Sample calculations are presented for the ridge

waveguide.

Summary

I. Formulation

The problem of electromagnetic wave propagation in
hollow, conducting waveguides of arbitrary cross

section is considered. The problem is formulated as
the integro-differential equation

L(j) = O (1)

where L is the integro-differential operator

L(?) = -~tan = [j~+ ~V~tan (2)

Here, ~, ~, and ~ are the vector potential, scalar po-

tential, and electric field~r~spectively, due to the

two-dimensional wall current J. tan denotes the com-

ponent of electric field tangenti~to the waveguide

wall.

Equation (1) has been shown to be an expression of
a nonlinear eigenvalue problem.1 The waveguide cutoff

wave numbers f~] = f~ ,+ka . . . ] and corresponding

wall currents{Ji,] = {Ji, Jz, . ..] appear as eigen-

values and eigenfunctions, respectively.

II. Reduction to Matrix Formulation

A variational solution is effected by reducing

equation (1) to matrix form ueing the method of
moments.2 The problem is thereby reduced to the

matrix equation

[z] [1] = [0] (3)

where the elements of the generalized impedance matrix

[z] are determined purely by the waveguide geometry
and the expansion and testing functions employed in
the moment solution. The solution is then simplified

by symnetry considerations. The details of this
development are presented elsewhere.1

III. Determination of Cutoff Wave Numbers and Field
Distributions

If a complete expansion function set on the domain

of the operator L is used in the development of

equation (3), then solutions exist if and only if

lDet Z(k)l =0 (4)

In general, the expansion set used here will enable
only an approximation of exact wall currents. For an
adequate approximation, the cutoff condition is
characterized by

lDet Z(k) I = Minimum (5)

It has been shown that once the cutoff wave
numbers are determined the corresponding wall current
can be computed approximately as the eigenvector of a

symmetric real matrix.1 The method used here is to
first perform a Householder tridiagonalization. The

eigenvalues are located by bisection, using Sturm

sequences, and the eigenvectors are computed using

Wielandt iteration.

The expressions used in the field evaluation schem
used here were derived in detail in reference 1. AI-Iy

field component at a point P on a waveguide cross
section can be expressed in the form

(6)

where Er is a known function, C is the contour bound-
ing the waveguide cross section. The field distri-
butions are computed by numerically integrating

equation (6) with the wall currents being approximated

as previously described.

The accuracy of this method has been demonstrated
using computations made for rectangular and circular

waveguides, where exact solutions are known. 2 Using

relatively low order matricea cutoff wave numbers are
determined to within a few tenths of one per cent of

exact values, while computed distributions of both
longitudinal and transverse field components agree to

within a few per cent of exact values.

Iv. Example--Ridge Waveguide

Exact solutions for the single ridge waveguide

shown in FIG.1 are not known. For this reason values
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of cutoff wave numbers computed by the method
developed here will be compared to other estimates of

the exact cutoff wave number. In particular, results

here are shown for the lowest four TE modes and the

lowest TM mode. Values tabulated in Table I corres-

pond to the waveguide in FIG.1 with dimensions in the

proportion a:b:c:d = 2:4:2:1. It is to be noted that
the waveguide in FIG.1 is symmetric about the X-axis.

Accordingly, the modes tabulated have wall currents

possessing odd or even symmetry about thie axis and

are so labeled ODD or EVEN in Table I. In this table

the values comp~d by the method developed here are

compared to various reference values. Tabulated

immediately to the right of each reference value is

the per cent difference between that reference value

and the corresponding computed value. Computed values

of field distributions in the ridge waveguide are

presented in reference 1.
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SINGLE RIDGE WAVEGUIDE CROSS SECTION

Table I--Normalized Cutoff Wave Numbers (kb) for the Single Ridge Waveguide

UTRIX MODE
WAVE NUMBER (kb)

PERCENT RRFERENCE3 PERCENT REFERENCE4 PERCENT
)RDER COMPUTED REFERENCE DIFFERENCE WAVE NO. DIFFERENCE WAVE NO. DIFFERENCE

13
TEODD

2.2566 2.250* 0.31 2.2627 0.27 2.2412 0.68

15
~EEVEN

&.9373 h. 840f+* 2.0 4.9251 0.25 4.8460 1.9

13
TEODD

6.5218 6.4575** 0.99 6.4864 0.54 6.4532 1.0

22
~EVEN

7.5361 7.5074** 0.38 7.5249 0.15 7.5188 0.23

29
~EVEN

12.164 11.974** 1.6 12.1416 0.18

*
Value given in references5,G

**
Value given in reference7
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